Monatshefte für Chemie 116, 137-139 (1985)

Monatshefte für Chemie Chemical Monthly © by Springer-Verlag 1985.

2 D-NMR of Natural Products. Part VII* Assignment of Carbonylresonances of Glutathion by Heteronuclear Shift Correlation

Short Communication

Ernst Haslinger and Wolfgang Robien

Institut für Organische Chemie, Universität Wien, A-1090 Wien, Österreich

(Received 3 October 1984. Accepted 10 October 1984)

The CO-resonances of glutathion were unambiguously assigned by means of heteronuclear $2 D^{-1}H^{-13}C$ -shift correlation.

(Keywords: Nuclear magnetic resonance; Peptides)

2D-NMR von Naturstoffen, 7. Mitt.: Zuordnung der Carbonyl-Resonanzen von Glutathion mittels heteronuklearer Shiftkorrelation (Kurze Mitteilung)

Durch heteronukleare $2 D^{-1}H^{-13}C$ -Shiftkorrelation wird die eindeutige Zuordnung der CO-Resonanzen von Glutathion getroffen.

The assignment of carbon resonances via long range couplings is of great practical interest in determining three bond ${}^{1}\text{H}{-}{}^{13}\text{C}$ connectivities. Especially in peptides the unambiguous assignment of carbonylresonances can be achieved by using those couplings. Two-dimensional heteronuclear shift correlation ${}^{1-4}$ and selective INEPT⁵ experiments have been developed using polarisation transfer via long range coupling. A shortcoming of these methods are the long delays, which must be used for very small J_{CH} . These delays cause loss of magnetization due to relaxation. Recently a new improved pulse sequence for shift correlation has been described which reduces these delays⁶.

Using the ${}^{2}J_{\text{HC}}$ which is in the order of 4–7 Hz and the ${}^{2}J_{1_{\text{HN}}1_{3_{\text{CO}}}}$ which

^{*} For part VI see Ref.⁹.

is $3-5 \text{ Hz}^7$ one can in favorable cases gain information about the amino acid sequence of small peptides⁶.

We have performed a conventional heteronuclear shift correlation experiment to assign the carbonyl resonances of glutathion (1).

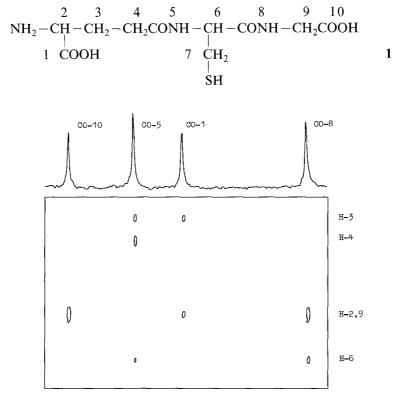


Fig. 1. Contour plot for the CO-resonances of 1

Since the 2D experiment yields an assignment different from that described in the literature⁸ we want to report these results (see Table 1).

Table 1. Chemical shifts of the CO-resonances in D_2O , pH = 3.5 of 1

СО	(ppm)
1	173.7
5	174.3
8	172.3
10	175.0

Fig. 1 shows a contour plot of the carbonyl resonances. In addition to the correlation via the ${}^{2}J_{1_{\rm H}1_{3_{\rm CO}}}$ one can also see correlation signals produced by the ${}^{3}J_{1_{\rm H-C-C}1_{3_{\rm CO}}}$ which can be as large as 9 Hz⁷.

In *Glu* this leads to a correlation signal between CO-5 and the protons in position 3. No such correlation has been found to CO-1.

Acknowledgement

We are grateful for financial support from the Fonds zur Förderung der wissenschaftlichen Forschung in Österreich (Project No. 4009).

References

- ¹ Mondsley A. A., Ernst R. R., Chem. Phys. Lett. 50, 368 (1977).
- ² Bodenhousen G., Freeman R., J. Magn. Reson. 28, 471 (1977).
- ³ Mondsley A. A., Müller L., Ernst R. R., J. Magn. Reson. 28, 463 (1977).
- ⁴ Binst G. v., Wynants C., Hallenga K., Michel A., Zanen J., J. Magn. Reson. 57, 93 (1984).
- ⁵ Bax A. D., J. Magn. Reson. 57, 314 (1984).
- ⁶ Kessler H., Griesinger C., Zarbock J., Loosli H. R., J. Magn. Reson. 57, 331 (1984).
- ⁷ Bystrow V. F., Progress in NMR Spectroscopy, Vol. 10, p. 41 (1976).
- ⁸ Jung G., Breitmaier E., Voelter W., Eur. J. Biochem. 24, 438 (1972).
- ⁹ Buchbauer G., Fischlmayr A., Haslinger E., Robien W., Völlenkle H., Wassmann C., Monatsh. Chem. 115, 739 (1984).